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~ J

The present paper deals with the strong convergence of trajectories

S ( t ) x  of a strongly continuous semigroup of contractions S ( t ) , as t -
~ ~~~.

A general sufficient condition for such convergence to occur is introduced and

some examples in which the condition is satisfied are provided. Strengthen-

ing the general convergence condition , sufficient conditions for certain rates

of convergence of S(t)x to its limit are exhibited . In particular a

sufficient condition for a trajectory to reach equilibrium in finite time

is given. The convergence as t ~ of solutions of certain nonau tonomous

equations and a discrete version of all the previous results are briefly

discussed .
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SIGNIFICANC E AND EXPLANATION

Many c’f the phenomena in nature are governed by a special type of equation

.alled an evolution equation. What characterizes these equations is that the

state of the system , described by the equation, at the time t uniquely deter—

uLn~ s the whole future evolution of the system . Some examples of such evolu-

ti on ;•r~~~ sses are: The motion of a pendulum , temperature distribution in a

~r h ~ .iinq body, diffusion of salt in water , certain flows of fluid s etc . The

~u~~ ions ~lescribing each one of these phenomena are of course diffei ent but they

alL f l ,V e  in c~1nmon the  property mentioned above namely, the state of the system

each time t determines the whole future uniquely.

~ne of tht- natural questions that arises concerning such evolution systems

is what } . i ~ ! n s  to the system after a long time (or as time tends to infinity)

~ 1 nce tlv who1~ futur~ is determined by the equation and the initial conditions

~,re k o o w n  to us, we should be able to predict the behavior of the system

as t n ~ qoes to infinity, or in other words the asymptotic behavior of the system .

An evolution system may have different types of behavior as t ~ ~~~. One

of tl ~ most common L. neviors is that the soiution converges to a stationary

(i.~~. tim~ i i o ’ n d nt) solution of the problem . For example the temperature

in an i~~~u1~~teci lj ,dy with ’ut sources of heat will tend exponentially to a constant

tem ; o iture. The motion f a pendulum , taking into account friction, will

eventually st.o; . If the friction is small it will be only as t -
~ that the

l en d u lu m  will stop . If the friction is “large” it will stop in finite time .

In this paper we deal with the asymptotic behavior of a class of evolution

equations . We give conditions on the equations that guarantee that the solution

will tend as t -
~ ~ to a stationary solution , whatever the initial data are.

4~: s t u ~~ ’ the x 0 t ~ of convergence to this stationary state. In particu1~~c we

(J I V (  :onciitjons for which the stationary state is attained io finite time .

7~s w  mentioned above, the initial data determine the whole t u t ~ u .  ot  th e

system uniquely. Therefore in principle it should be possible to l e t e t i n i l i

a-~ rior i the limiting state of the system for any given m i t  :.il n.~ it ions. In

u er t , l ln  simple cases this is indeed the case. In general however , L t  i e  .‘.~~~~~~‘

diffi ult to predict the limit without solving the qiiat ioiis . is ‘ v i  dif t i r u lt

t o  g ive nontrivial e t i r n a t e e  on the “location ” of this lim iting e > l o t i o i i .  We

discuss this problem in the present paper via a specific example ot heat  . n l t i  t i o n .

The respons ibil ity for the wording and views expressed in this descriptive
su mm d r /  lies with MRC , and not with the author of this report.
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§ 1. Introduction

Let H be a real Hilbert space, c a closed convex subset of H and S ( t )  : C -* C

a strongly continu ous semigroup of contractions on C. The purpose of the present paper

is to study the strong convergence of the trajectories S ( t ) x , x C C of S ( t )  as t -
~

In Section 2 we introduce a rather general condition on the generator A of a

semigroup SIt) , called the convergence condition. This condition assures the strong

convergence of S(t)x as t -
~ ~ for every x C C. It can be seen by simple examples

(e.g. example 4.5 of the present paper) that the convergence condition is not necessary

in order to have strong convergence of S(t)x as t + ~~~, for all x € C. The convergence

condition, introduced in Section 2, contains as special cases most of the previously

known sufficient conditions for strong convergence of all trajectories of a semigroup

of contractions in Hilbert space. The only known notable exceptions are seinigroups

generated by subdifferentials of l.s.c. (lower semicontinuous) even convex functions (see

[61 ) and semigroups having a f ixed point set with nonempty interior (see 13), [81).

In Section 3 we study the convergence condition more closely . We show that certain

natural compactness assumptions on the resolvent of A together with a simple geometric

condition on the tangent of the trajectory at each point imply the convergence condition.

In particulat we prove that the convergence condition is satisfied if A is the sub—

differential of a l.s.c. convex function ~ whose level sets are compact and as a

consequence we obtain a result of H. Brezis [3 1. The second part of Section 3 is devoted

to some simple examples of the way that the abstract results of Section 2 can be applied

to the study of the asymptotic behavior of certain nonlinear parabolic partial differential

equations.

tpermanent address: Institute of Mathematics, the Hebrew University of Jerusalem .

Sponsored by the United States Army under contract No. DAAG29—75-C—0024.
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In general, the convergence condition introduced in Section 2 does not imply any

Special rate of convergence . It is not difficult to construct examples in which the

convergence is as slow as one wishes , or very fast. In many cases however , a slightly

stronger condi t ion, called the uniform convergence condition is satisfied. If this is

the cas~ one can usually obtain some information on the rate of convergence of S(t)x to

its limit p as t -
~ ~~~. The uniform convergence condition is the subject of Section 4.

Among other consequences of the uniform convergence condition we give in Proposition 4.8,

sufficient conditions for S(t)x to attain its limit in finite time.

Section 5 is devoted to a brief consideration of the asymptotic behavior of solutions

of certa i n  nonautonomous i n i t i a l  value problems . In particular we show that if A

satisfies the convergence condition , not only does every trajectory of S(t), the semi-

group generated by A , converge as t ~ ~ but also all solutions of the initial value

problem

(u~ + Au ~ f ( t )
(1.1) (Lu(o) ~~ x

with f ( t) C L~i(O,°u :H) converge strongly as t + ~~~.

In Section 6 we study a discrete version of the main convergence results of this

paper. The results of this section are related to a recent paper of H. Brezis and

P. L. Lions [5].

The convergence condition assures that S(t)x + p as t ~ where p is a fixed

point of S(t). If the set F of fixed points of SIt) contains more than one point,

the natural question of the identification of the limit point p in terms of the initial

value x arises. Very little is known in general on this difficult problem. In

Section 7 we study in somewhat greater detail an example of a nonlinear Neumann problem.

In this example we use the techniques developed in this paper together with some standard

tools as the maximum principle to prove the convergence of the solutions of this problem

to fixed poi nts , to estimate the rate of this convergence and to obtain some a—priori

estimates ozi the lj,~it in terms of the initial data.

Finally, I would like to express my gratitude to FT. Brezis and M . Crandall for

several stimulating discussions concerning the results of this paper .
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§2. The convergence theorem

Let H be a real Hilbert space with inner product C , ) and norm j . Let A

be a maximal monotone set in H X H and let S(t) be the semigroup of contractions

generated by A. For a systematic exposition of the theory of monotone operators and

seutigroups of contractions in Hilbert space see (21 . We denote by F the (possibly

empty) set of fixed points of the semigroup S(t), that is

(2.1) F = {x : x C D (A’ , S(t)x x Vt > O}

It is not difficult to see that

(2.2) F A 
l
o {x : x E D(A), A°x = o}

where A°x is as usual the element of minimum norm in the set Ax. Since A
1 is

max imal monotone together with A , F is always a closed and convex subset of D(A).

If F * ~ we shall denote by P the projection on F.

Definition 2.1:

A maximal monotone set A C H x H satisfies the convergence cundition if:

—l
a) F = A 0 is not empty .

b) (y,x - Px) > 0 for every [x ,y] C A such that x j F.

c) If Lx ,y I e A , Ix < C, I~i I < C and (y ,x — Px ) + 0 as n + then
fl n n — n — n n n

h u t  inf dist(X ,F) = 0
nn-~~

where dist(y,F) is the distance between the point y and the closed convex set F.

Remark: For reasons of later convenience we stated part (b) of the definition explicitly

even though it is clearly implied by part Cc) .

Our main result is the following theorem.

Theorem 2.2:

Let A be maximal monotone and let S(t) be the semigroup generated by A. If A

satisfies the convergence condition then for every x € D(A), S(t)x converges strongly

as t. + to a fixed point of S(t).

In the proo f of Theorem 2.2 we shall need the following two lemmas.

—3—



LemBa 2.3 (B a i llon—Brez is  [ 1 ] ) :

Let 5(t) be a semigroup of controctions on a c1o~ ed convex subse t C C H . I f

F ~ ~ and P is the projection on F, then for every x C C, PS(t)x converges strongly

as t + .

Proof: Since P is the projection on F , we have ;

(2.3) Pv — u1 2 .~~ Iv — u 1 2 - IPv — v I 2 Vv E H, u € F

Substituting v = S(t + h)x and u = PS(t)x into (2.3) we obtain

IP s(t  + h)x — PS(t)x1
2 

~ sIt + h)ic — PS (t)xJ
2 

— I S ( t  + h ) x  — r s (t  + h ) x 1 2 
~

~ I s ( t x — PS(t)x1
2 — S( t + h)x — P S ( t  + h)x !

2

Therefore, t ‘÷ S(t)x — PS (t)x1 2 is monOtone nonincreasing and PS(t)x is a Cauchy net. •

Lemma 2.4:

Let A be maximal monotone with F = A 1
0 * 4,. If x € D(A) then PS(t)x is

dif f e ren t i ab le  a .e .  in t and

(2.4) (dPS (t)x 
, S(t)x — P S ( t ) x }  = 0 a.e. in t > ~

Proof: For x € D ( A ) , S(t)x is Lipschitz in t and since P is nonexpansive PS(t)x

is Lipschitz in t and therefore differentiable almost everywhere.

From the definition of P it follows that

(2.5) (PS(t + h)x — PS(t)x , S(t)x — PS(t)x) < 0

Divid ing (2.5) by h > 0 and h < 0 and letting h 0 the result follows . •

Proof of Theorem 2.2:

If x E D(A) then

(2.6) dS(t)x 
+ A°S(t)x = 0

Multiplying (2.6) by S(t)x - PS(t)x and using Lemma 2.4 we obtain

(2.7) ~ ~~ IS ( t ) x  — PS(t)x1
2 

+ (A°S(t)x,S(t)x — P5(t)x) = 0

Since (A°S(t)x,S(t)x — PS(t)x) > 0 it follows that t ‘-~ I5 ( t )x  — PS (t)xI is monotone

nonincreasing . From (2.7) it also follows that (A 0S(t)x,S(t)x — PS(t)x) € L~ (0 ,”).

—4—
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Ther e f o r e  there is a sequence t
k 

-* = such that  (A°S(t
k
)x
~

S ( t
k

) x  — P S ( t
k

) x )  • 0 as

t
k 
• Since F * 4, implies that jS(t )xI is bounded and I A°S(t)xI ~~. I A °x i  fo r

a l l  t > 0 it f o l l o w s  from the convergence condition that  l iminf  I S ( t k) x  — P S( t
k
)xi = 0

k-~~
and since t 

~
÷ I s t x  — PS(t)xI is nonincreasing , I s t x  — P S ( t ) x i  0 as t

Finally, it follows from Lemma 2.3 that IPs(t)x - + 0 as t -
~ for some p C F

and therefore  S ( t ) x  + p as t ~ . This concludes the proof for x 6 D ( A )  . For

x C D ( A )  the resul t  follows from a simple continuity argument .

We turn now to a perturbation theorem . In ord er to State it  we shall need the

following definition.

Def in i t ion  2 .5 :

Two multi valued operators A and B are relatively locally bounded if for every

R > 0 the boundedness of the set { (A + B)x : x € D(A) (~ 0(B) , x l  < R} implies the

boundedness of the sets {Ax : x € D ( A )  fl D ( B ) , x l  < R} and {Bx : x E  D ( A )  fl D ( B ) , l x i <R}.

Note that  if one of the two operators A or B is locally bounded i .e .  it maps

bounded sets into bounded sets then A and B are always relat ively locally bou nded .

Theorem 2.6:

Let A be maximal monotone and let B be monotone such that A + B is maximal

monotone. If A sa t i s f ies  the convergence condition and

i) 8
1
0 = F

B 
D F

A 
= A 1

0

ii )  A and B are relatively locally bounded

then A + B sat isf ies  the convergence condition .

Proof: From our assumptions it follows that F
A+B 

D F
A 
0 F

B 
= F

A 
and therefore

F
A B  * ~~ . If x C F

A B  then there are C Ax and r1
2 

€ Ox such that + = 0.

Multiplying this equality by x - P
A
x where is the projection on F

A . 
we have

(~ 1, x — P
A
x) + (~~2

,x — P
A
x) 0

Since P
A
X € F

B~ 
both terms must vanish and therefore by the convergence condition

x = P
A
X i .e. x e F

A
. Therefore F

A B  
= F

A 
and 

~A+B 
= 

~A 
Assume now tha t

[ X , Y I  e A + B, l x i  < C , 
~
‘n 1 < C and (y ,x — P

A B
x )  + 0 as n * . Set

—5—



y = r~ + n ’ where fl C Ax and fl ’ € Bx thenn n n n n n 0

(ii ,x - P x ) + (ri ’,x - P x ) + 0
n n A n  n n A n

as n -+ . Since both terms are nonnegative we have (n ,x — P x ) + 0. From (ii) wen n A n
deduce that n I  < R and therefore it follows from the convergence condition that

there is a subsequence {n } such that lx  - r x I + 0 and thus A + B satisfiesk ~~ A n ~

the convergence condit ion.

Remark 2 .7 :

In the previous theorem the condition that B is monotone can be replaced by the

following assumption; there is a k > 1 such that A + kB is monotone . To see this,

note tha’ in this case k
1A + B is monotone and defining A

1 
= (1 — k 1) A , B

1 
= k 1A + B,

B
1 

is monotone and the pair A
1
, B

1 
satisfies the conditions of Theorem 2.6 therefore

A
1 
+ B

1 
= A + B satisfies the convergence condition.

We conclude this section with a proposition showing that if A satisfies the

convergence condition so does its Yosida aporoximation A
~ 

= A 1
(1 — (I + AA )

1
).

Proposition 2.8:

Let A be maximal monotone. If A satisfies the convergence condition , then for

every A > 0, A
A satisfies the convergence condition.

Proof: It is easy to see that F = F
A 

and therefore F
A 
* $ and the projection on

x
F
A 

is the same as the projection on F
A
. We denote this projection by P. Let lx I < C ’

A n

IA x I 
< C and ,

A n  —

(2.8) (A x ,x — Px ) = (A x ,J x — Px ) + A l A  x 2 
-, 0 as n -+ =A n n  n A n  A n  n A n

Since I A x I < C also J x are bounded. From (2.8) we deduce that A x I -+ 0 asA n  — A n  A n

n -
~ and that (A x ,J x — Px ) -~ 0. Since A x € AJ x it follows from theA n  A n  n A n  A n

convergence condition that liminf l~ 
x - Px 0 but lx — ~ x I A l A  x I -+ 0 as

A n  n n A n  A n

n + and therefore liminf lx~ Px n I = 0 and the proof is complete.

-6-
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§3. The convergence condition and some examples

In this Section we shall see some sufficient conditions for a maximal monotone

opera tor A to satisfy the convergence condition. After this we shall give some Simple

concrete examples for which the condition is satisfied .

Let ~ be a proper convex lower seuiicontinuous (l.s.c.) function and let A

be its subd i f fe ren t i a l. It is well known (see e.g. [2] example 2.3.4) that A is

maximal monotone and we have ,

Proposi tion 3.1:

Let ~ be a proper convex l.s.c. function on H satisfying ~ (x)  > 0 and

Mm ~ Cx) = 0. If for every R > 0 the level sets
xf H

(3.1) K
R 

= Ix I ~~ R, ~p (x) < R )

are precompact then A = ~~ Satisfies the convergence condition.

Proof : Since by assumption , the minimum of ~~(x) is attained F = A
1
0 * 4,. From the

definition of ~ we have

~ (Px) - ~ (x) = -‘p (x) > (y,Px - x) V [x,y] C A

and there fo re ( y , x - Px) > ~‘(x). Let lx I < C, l~ I < C, y C Ax and (y ,x — Px ) + 0.— n — n — n n n n n
This implies x )  -‘0 and therefore ~~( x )  < C  for n large enough. Since {x}

lies in a precompact set M
C it has a converg ing subsequence {x I. Let x + x, by

the lower semicontinuity of ~ it follows that ~ (x) = 0 and therefore x C F and

l iminf  d i st ( x  ,F) = 0.
n

n-~~

Remark: The consequences of Proposition 3.1 namely, the strong convergence of S(t)x as

t -
~ = under the assumptions of Proposition 3.1 were proved by H. Brezis ([2] , theorem 3.11)

by a different method .

Our nex t proposition is a generalization of the previous proposition to the case

where A is no longer d s u b di f f e r e n t i a l  of a convex func t ion .

Proposition 3 . 2 :

Let A be a maximal monotone operator with F = A l
o * 4,. If for every (x,y] C A ,

x 0 F, (y,x — I x )  ~ 0 and (I + A) 
1 

is a compact operator then A satisfies the

convergence condition.

—7—
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proof: We have only to show that A satisfies part (c) of the convergence condition.

We f i r s t  check that if ( I  + A) 1 
~ S compact then for every R > 0 the set

(3.2) = Cx : x € D(A), xl < R, ~l < R for some y e Ax)

is precompact. This follows immediately from the following observation; if M
R 

is the

image of 5
R 

= Cx : Ix I < R) by the mapping (I + A)
1 

then ER/2 
C M

R
. Indeed

x e E~,,,2 
implies I x I  < R/2,  lA °xI < R/2 so if z = x + A°x , l z l < R and x = (I + A)

1
z.

Therefore x € M
R
.

Assume now that (x ,y  I C A , lx I C, y < C and (y ,x - Px 1 -* 0. From then n n -- n — n n n

compactness of E it follows that t~~ r -  is a subsequence x such that x -‘ x as
C n

k 
n
k

n
k 

-‘ . Therefore , Px * Px. Passing to. a subsequence of 
~
°k~ 

if necessary, we
n
k

can assume that y converges weakly to some y and deduce from the maximality of A

that Lx ,yl C A and (y,x - Px) = 0. From our hypothesis it now follows that x = Px

i.e. x C F and so dist (x ,F) -‘ 0 aS n • . Therefore pert Cc) of the convergence
n
k 

k

condition is satisfied and the proof is complete. U

We turn now to some simple examples. In  these examples 0 will be a bounded

domain in IR
ti 

with smooth boundary ~0. H will be the Hilbert space L
2 (0) , its

norm will be denoted by II and 8 wil l  be a maximal monotone graph with pr imitive

j ( x ) , i.e. j (x) is a proper convex lower semicontinuous function on IR such that  ~ lj.

Example 3.3:

Let 0 C 3(0). In H = L
2
(0) consider the operator A

0 
defined by :

(3.4) 0(A
0
) = {u : U € H2 (0) , -~~- e 3(u) a.e. on

and

(3.5) A
0
u = — u for u € D(A

0
)

Here H2 (f�) is the usual Sobolev space consisting of all functions u which are in

L
2
(0) together with all their second order distributional derivatives and n is the

outward normal to ~0. It was shown in (3] that A
0 ~

‘
~~~~

‘ where is a proper

convex l.s.c. function g iven by

—8—
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1~ I I~~u I~~
dx + f j (u)du for u € H

1
(0) and j(u) € L

1
(~ )

30
(3.6) ~~~(u )  = \

otherwise

Therefore , in particular , A
0 

is maximal monotone. From Rellich ’s compactness th~ crcm

it read i y  fol lows that the sets

(3 .7) M
c 

= Cu : u C L2(Q), Il u ll <C, p
0
(u) < C }

are precolnpact in L
2(P) for every real C. Also clearly 0 € F

A • theref ore F
A

ond we can apply Proposition 3.1 to show that for every u
0 

€ L2 (0) the solution of the

initial value problem

r ~~ 
- Au = 0 in 8 x (0, )

(3 .8) - 
~~~~

C 3(u) on 38 x C0 ,=)

u(0,x)  = u
0
(x)

converges Strong ly as t -
~ = to a solution of the equation A

0
v = 0.

Remarks: This result can also be derived from a theorem of R. Bruck [6] stating that

if A = 2tp for some l.s.c. proper convex function ~ and F � 4, then for every

C 0(A) the solution of the initial value problem

(u + Au u 0
(3.9) 4 t

Lu(0) = u0

converges weakly ss t -‘ = to some solution of A
0
v = 0 . Using the compactness of th e

Sets K~ defined by (3.7) one sees easily that the convergence of the solutions of the

initial value em blem (3.8) is actually strong . The strong convergence of the solutions

of the initial value problem (3.8) was first proved by H. l3rezis in [31 using estimates

on tie decay of the derivative of the problem (3.9) in conjunction with the

compac tness of the level sets K
c
.

For the problem (3.8) it is not difficult to characterize the set of possible limits

ef so lu t ions  F
A 

= A
0
10. Indeed , F

A 
is the Set of all constant functions u(x) =

where p ~ 8 (0).

-9-
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Next we perturb the problem (3.8) as follows . Let B be a bounded linear operator

on L2(8) satisfying

(3.10) 1 1 0 1 1  = 1

and 
-

(3.11 ) B 1  = —l

Clear ly  the operator I + B is monotone and since it is everywhere defined and continuous

it is maximal monotone. Moreover , by a standard perturbation theorem (see e.g. [2],

corollary 2 .7) A
0 

+ I + B is maximal monotone . From (3.11) it follows that F
I+B

contains all constant functions u(x) = a and therefore

13.12) F
I+B 

F
A
0

Invoking Theorem 2.6 we obtain

Proposition 3.4:

For every u
0 

C D ( A
0
) the solution of the initial value problem

- I ~~~~— A u + a + B u = O  in l lx  (O , )

(3.13) - C 3Cu) on 38 x (0,=)

L u ( 0 ) = U
o

converges in L2 (8) as t -+ = to a constant a Co o ) satisfying a (u
0
) C 3

1
(0) .

Example 3.5:

Let C~, H and B be as above and assume again 0 € 8(0) . Let A
1 

be defined

as follows:

(3.14) 0(A
1
) = Cu : U C H

2 (0) 0 H~~(c2) , 3(u) C L 2 (8) }

and

(3.15) A u = —Au + 3(u) for u e D(A
1
) -

1

It is well known, see e.g. (31 that A
1 

= 

~~l 
where is a proper convex l.s.c.

func t ion  g iven by

— 10—
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(
~- I lVu I 2dx + f j(u)dx for u € H

1
(8) and j(u) C L

1
(Q)

(3.16) p
1
(u) (~ 0 8 0

otherwise

Again, it follows easily from Rellich ’s compactness theorem that the Sets

Mc = Cu : u € L
2
(8), I l u l l  c , ~ 1

(u) < c }

are precompact in L
2
(C2) for every real C. The set A

1
10 is in this case the singleton

{o} and from Proposition 3.1 we deduce that all the solutions of the initial value problem

- Au + 8(u) s 0 in 8 x (0,~ ’)

(3.17) u = 0 on 38 x (0, )

L u ( 0)

converge strongly to zero as t + =.

Consider now the first order operator

(3.18) Lu = b.
- i3x .- i=’l 1

defined say on H~~(8). L is clearly monotone and A
1 

+ L is maximal monotone . This

follows from a perturbation theorem for maximal monotone operators ((7], theorem 4.4)

and the estimate

(3.19) I I Lu 1I ~ c I l A 1u li  + C(c)Il u Il

that holds for every c > 0 and u € D ( A
1

) because of the compactness o” ~-“~~ .‘mbedding

of H
2
(Q) 0 H~~(f)) in H~ (ll) . The estimate (3.19) also shows that A

1 
and L are rela-

tively locally bounded since u €  0(A 1
) ,  l I u ll < R, I I A 1 + L ) u I i  < R imply

(3.20) I I A 1u II < II CA
1 

+ L)uII + I l Lu l l  < R + L I I A 1uI I  + C ( c )  R

which implies that i I A 1u ll  is bounded.

Since clearly 0 € F
L 

= L 
1
o F

L 
3 F

A 
and we can apply Theorem 2.6 to obtain;

Proposition 3.6:

For every u
0 

C D ( A
1
) the solution of the initial value problem

— 11— 
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— t,u + 8(u) + Lu 5 0 in 8 X (0 , )

(3.21) u = 0 on 38 x (0 ,=)

L u ( 0 )  = u0

converges in L
2
CO) to zero as t -

~ =.
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§1 . i n * - remarks concerning the rate of conv~~~~ r,ce

In  - -t io i 2 we saw that if a maximal monotone operator A satisfies the convergence

Pee Definition 2.1) then all the trajectories of the semigroup SCt) generated

14 A - ver~p- trorsj ly to fixed points of SIt) . Nothing however , can be said , in

gen r~ l, on the- rate of this convergence or on the identification of the limit point in

ti ri’e~ ef the initial data .

In th i~ sect e,n we sha l l  study some special cases of semigroups for whi ch the r~~te

of convergence of the trajectories to f ixed  points  of 5 ( t )  can be determined .

In order to study the rate of convergence we introduce gauge functions as follows :

Defi nition 4.1:

A function : [0, )  -‘ [O ,~~) is called a gauge function if p(s) > 0 for s > 0

and lint e(s ) = 0 implies liminf 5 = 0.
n nn-’ n-~

In terms of gauge functions the convergence condition Coefinition 2.1) can be restated

as follows . A maximal monotone operator A satisfies the convergence condition if

F = A
1
0 �~ 4, and for every constant C > 0 there is a gauge function ~~(s) satisfying

(4 .1) (y,x — Px) > p ( I x  — PxI)

for all  [x ,y] € A such that l x i < C and l~~l < C. The gauge functions , for

an operator satisfying the convergence cond ition are given by

(4.2) = Inf{(y,x — Px) : [x ,y] € A , l x i ~~C, l~~l < C ,  lx — 
~x I  = s)

In some applications the gauge functions ps(s) given in (4.2) are independent

of C. In this case we have ,

Definition 4.2:

A max imal monotone operator A satisfies the uniform convergence condition if

F = A 
1o � ~ and there ex is t s  a gauge f u n c t i o n  c ( s )  such tha t

(4.3) Cy, x — Px ) 
~~p (lx — PxI) V [ x , y )  € A

Example 4.3:

Let A be a strongly monotone operator i.e. there is a positive constant such that

(4 .4) (y
1 

— y
2
, x

1 
— x2) > m i x 1 

— x
2 i

2 Y ( x ,y.J C A

—13—
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If F * 4, we can replace x
2 

by Px
1 

to obtain (4.3) with the gauge function P (5)  = as2.

Mote that it follows front (4.4) that A 1o contains at most one point. A concrete

example which is strongly monotone is given by A = -A with Dirichlet boundary conditions

on a bounded domain 12. This follows front:

— f Au u dx = f Ivu I
2
dx 

~ 
‘

~~~ 
I Iu l

2dx

where the last inequality is Poincar~~’s inequality .

Example 4 . 4 :

Let A be a maximal monotone set such that F = A
10 * 4,. Assume further that

there is a p C  F such that 0€  ‘n t Ap. Let B (0) = Cx : xl ~~~ C Ap then

(y — pu , X — p) > 0 V [x ,yI C A and all u satisfying uI < p .

Therefore,

( 4 . 5 )  ( y , x — p) > ol x —

It follows front (4.5) that F = {p} and therefore A satisfies the uniform convergence

condition with p (s) = ps.

Example 4.5:

Let A be a linear maximal monotone operator which is c-angle bounded i.e. there

is a constant o > 0 such that

(Ax ,y) < ci (Ax,x) + (Ay,y) for all x ,y € 0(A)

If the range of A , R ( A ) , is closed then A satisfies the uniform convergence

condition. Indeed , from the closed graph theorem it follows that there is a positive

constant a > 0 such that

(4.6) tAX I > a~x — pxl for all x € 0(A)

where P is the orthogonal projection on N(A) = F = A
1
0. Front the angle boundedness

of A it follows that

(Ay , x) < 2/~ (Ax,x) l~
/2

(Ay,y)
l
~
/2 

for all x ,y E 0(A)

Now, since 8(A) is closed H = 8(A) a N(A) and A restricted to RCA) 0 D(A) is

one to one and maps R(A) 0 0(A) onto R(A). Let x € D(A) then x - Px e 8(A) and

there is a y € R(A) 0 D(A) such that x - Px = Ay. Since y € R(A), Py = 0 and we have

—14—
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Ix — P x I 2 
= (Ay,x — Px) < 2v’~ (Ax ,x — Px)~~

’2
(y, Ay)1/’2 < 2r’~~ lx — Pxt

l//2
l y l

l//2 (Ax,x - Px)
1
~
’2
.

But from (4.6) it follows that IAy I > a I y I and therefore

Ix - Pxl
2 

< 

~ lx - Px I (Ax,x — Px) 1”2

which implies

(4.7) (Ax,x - Px) >
~~~~~

— Ix - Px1
2

Note that if A is self adjoint then it is angle bounded and a 1/4. So if A is

self adjoint and R(A) is closed A satisfies the uniform convergence condition.

On the other hand it is well known that if A is a positive self adjoint operator

then S(t)x -+ p as t + for every x € H. Since it is rather easy to exhibit a

positive self adjoint operator that does not satisfy the convergence condition we see,

as we have already mentioned in the introduction, that the convergence condition is not

necessary for the strong convergence of S( t ) x  as t -
~

A simple example of a self adjoint positive bounded operator that does not satisfy

the convergence condition is given in the real L
2 

space by Ax = {n 
1~~~} where

x = It is easy to check that N(A) = Co} and that if we denote by e 
~~nk~k=l

we have (Ae , e ) -
~ 0, fe I = 1, IAe I < 1 but Ce I has no subsequence thatn n n n — n n=l

converges strongly to zero.

When A satisfies the uniform convergence condition we can Often estimate the rate

of convergence of S(t)x to its limit as t + . Two typical examples will be given

below. We start with the following lemma .

Lemma 4.6:

If A satisfies the convergence condition and p = him PS(t)x then
t-+oo

(4.8) IS(t)x — 
~ 1 < 2fS(t)x — PS (t)xl Yx € 0 ( A )

Proof: We have already proved in Theorem 2.2 that if A satisfies the convergence

condition then

him S(t)x = him PS(t)x = p

—15—



From the proof of Lemma 2 .3 it follows that if S > t then

lps s x  — P S ( t ) x I 2 
~~ I s t x  — PS (t)xI

2 — iS(s)x — PS(s)x1 2

Letting 5 -* we obtain

(4.9) I~ 
— Ps(t)xf 2 < S(t)x — PS(t)xf

2

and therefore ,

IS (t)x — 
~~ l s t x — P S ( t ) X I  + fPs (t)x — 

~ l < 2fS(t)x — PS(t)xI

Remark: Letting t + 0 in (4.9) yields

(4.10 ) f p — ~~ x j < )x —~~ x l

which gives us some information on the location of the l imi t  p. Simple examples in

show that we may have equality in (4.10) .

Proposition 4.7:

Let A be maximal monotone. If A satisfies the uniform convergence condition

with a gauge function p (s) such that p(s) > cs2 then the convergence of S C t ) x  to

a fixed point has exponential rate, i.e. for every x € 0 (A )  there is a p € F such that

(4.11) lS(t)x — 
~ 1 < 2e

_ct
lx — Pxf

Proof: We assume first that x C 0(A). Multiplying the equation

u~ + Au 5 0

by u - Pu we obtain

~~ f u  - pul 2 + clu - puI
2 

< ~~

which implies

(4. 12) Iu — Pul ~ e ct
1 — mc I

and the result now follows from Lemma 4.6. The result for x C 0(A) is obtained by

continuity.

Assuming some stronger conditions on the gauge function p(s) we obtain convergence

to the limit in “finite time” .

~~q~~ sition 4.8:

Let A be maximal monotone satisfying the uniform convergence condition with a gauge

function p (a). If p (a) is measurable and for every C > 0

-16-
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(4 .13) 
c 

ds =

then for every x € 0(A) there exists a T , 0 < T < = and a p € F such that S( t) x  = p

for all t > T .  Moreover

Ix -Px I
(4. 14 T < fx — 0 p ( s )

Proof: We start again wi th x € D(A) and obtain the resu l t  for every x e 0(A) by

continuity . From the uniqueness of the Solution of the initial value problem

+ Au 5

(4.15 )

~~u(0) = x

it follows that if for some 0 < t
0 

< , uCt~) = p C F then u(t) = p for  all  t > to.

We define:

(4.16) G(r) = ds

It follows from (4.13) that G(r) is well defined and satisfies G(r) > 0 for r > 0.

Let s C t )  = lu(t) — Pu (t)I. Multiplying (4. 15) by u — Pu we obtain

(4.17)  ~~ s ( t) 2 + p ( s ( t ) ) < 0

From (4.17) it follows that s(t) is nonincreasing . We assume that s(0) = Ix - Pxl > 0.

Suppose 5 (t) > 0 for all t, 0 < t < T. Dividing (4.17) by p(s(t)) and integrating

from 0 to T yi elds

G(s ( T ) )  — G ( s ( 0 ) )  + T < 0

and hence

(4.18) T < G ( s ( 0 ) )

Therefore , s(t) must vanish for a finite T satisfying T
~ 

< G(Ix — P x l )  .

Corollary 4.9:

If A satisfies the uniform convergence condition with a gauge function 0(s)

s a t i s f y i n g  (5) > cs° with 0 < a < 2 then for each x € NA )  there is a p e  F such

that S(t)x = p for all t > c
1 (2  — a) ’lx — p x I 2

~~ .
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If  A Satisfies the uniform convergence condition with a gauge function

then the perturbation theorem (Theorem 2.6) reduces to the following simpler statement .

Proposition 4.10:

Let A be maximal monotone and let B be monotone such that A + B is maximal

monotone. If A satisifes the uniform convergence condition with a gauge function

and F
0 
3 F

A 
then A + B sa t i s f ies  the uniform convergence condition with the same

gauge function.

Proof: As in the proof of Theorem 2.6 we show that F
A+B 

= FA and therefore the projec-

tion 
~A+B 

on is the same as 
~A

’ the projection on F
A
. If [x,y] C A + B then

y = 11
1 

+ wi th 
~l 

C Ax , 
~2 

Ox and

(y,x - 8x ) = (ri 1,x - P
A

x) + (n
2
,x - P

A
X) > Cri

1
,x — P

A
x) > P

A
(lx - P

A B xI)

and the proof is complete .

Exam~~~~ 4.1l:

Let .~ be a domain in with smooth boundary 38. Let H = L2 (Ii ) and let A

be any maximal  monotone operator on H sa t i s fying 0 C A0. Let a > —2 and let B

b~- the everywhere defined operator

(4.19) Bu = u (J l U f
2
~~)

m
~
’2 

= u ll u i l °
0

It is not d i f f i c u l t  to see tha t  B C ~p where

( 4 . 2 0 )  ~~(u)  = (a + 2) 1 lt u Il~~ 2
and therefore B is monotone. Since B is continuous and everywhere defined it is

maximal monotone and B = 3p. Moreover , A + B is maximal monotone (see e.g. [2),

corollary 2.7) and for every u C 0(A) the initial value problem

[ 
~~

- - Au + u ll u ll °

(4.21)

~~ u ( 0 )  = u
0

has a strong solution. Clearly 0€  F
A 

and F
3 

= CC) so F
A

D F
3
. Also
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( 4 . 2 2 )  (Bu ,u — P
B

u )  = (Bu ,u )  = (f  l u l 2dx) 2
~~ =

and therefore B satisfies the uniform convergence condition with gauge function

c (s) = 5 . Thus by Theorem 4.10, A + B Satisfies the uniform convergence condition

with the same gauge function and we have:

Proposition 4.12:

For every a > -2 the solution of the initial value problem (4.21) converges

strongly to zero as t -~
. =. For -2 < a < 0 the solution reaches its l i m i t  in f i n i t e

t ime and for a = 0 the convergence is at least exponential.
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§5. The inhomogeneous equation

In this section we study the asymptotic behavior as t of solutions of t ie

ini tial value problem

+ Au S f ( t )
(5.1)

~~ u(0) = x

By a solution of (5 .1 )  we mean a weak solution in the sense of 12 1 , CChapter 3 , defini-

tion 3 . 1) .  It  was proved in [ 2 ) ,  [4]  that if f C L1 (0 ,T;H) then for every x € H ,

(5 .1)  has a unique solution uCt) € C ( [ J ,T];H). Mo reover , if v(t) is a solution of

the initial Value problem (5.1) with fit) rep laced by g(t) then

t
(5.2) u(t) — v(t) I ~~ 

u (s) — v(s) I + I if(o ) — 9(0) ida , 0 < m < t < T

In Section 2 we saw that if A satisfies the convergence condition and f(t E 0

then the solution of (5 .1 )  converges strongly as t -€ = to a so lu t ion p of 0 C Ap .

Our nex t result shows that  this  stays true if instead of f ( t )  = 0 we have

f (t ) € L1 (O,~’;H) and the solution of (5.1) is interpreted in the weak sense.

Theorem 5.1:

Let A be maximal monotone satisfying the convergence condition. If f C L’( O , °° ;H )

then for every x C H the solution of ( 5 . 1 )  converges s t rongly  as t -+ = to a point

p € F = A 1
0.

Proof: Let u(t) be the solution of (5.1) . Given any c ) 0 let T be chosen so that

(5.3) 1 If(°) Ida < c
T

and let v ( t )  be the solution of

(~~~~~+ A v )O
(5.4) dt

v(0) = u(T)

For t > T we then have by (5.2)

t
(5.5) I u t  — v(t — T) I ~~. I lf a Ida < r

T

—20—
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IPnce for every t ,s > T

(5.6) iuit ) — u(s) I < 2t + v (t — T) — v(s — T)

Hut from Theorem 2.2 we know that v(t) • p cc t and therefore by choosing s

~nd t large enough the second term on the right of (5.6) can be made as small as we

wish. Consequently, u(t) is a Cauchy net and we have u(t) -. u,~ as t -. . Since F

is closed , it  follows from ( 5 . 5 )  that  u C F. U

Remark 5.2:

The previous theorem shows that the solutions of the initial value problem (5.1)

arid the initial value problem

( du
— +Au~~ 0

( 5 . 7 )

= x

both converge as t + = to elements of F. Clearly, in general, the limits are not

the same and moreover the rate of convergence to the l imit  may be drastically changed

when we pass from (5.7) to (5.1). For example, if A sa t i s f ies  the uniform convergence

condition with gauge function p (s) and p (s) satisfies (4.13) then the solution of

(5 .7)  i ea~~hes its limi t in finite time, whereas the solution of (5.1) cannot converge

to its l imi t in f i n ite time unless Nt )  has compact support.

Given any g C H e define an operator A by, D ( A
g
) = 0 ( A )  and

(5.8) A x  = Ax - g Yx € D(A)

(L a’ -ly A is maximal monotone if and only if A is maxima l monotone and the in i t i a l

value problem (5.1) is equivalent to the problem

( 
~~~ 

+ A u S f ( tl —
(5.9)

u ( 0 )  = x

From this observation and Theorem 5.1 we obtain

Theorem 5.3:

Consider the initial value problem (5.1). If there exists an element f,,, € H such

that f(t) — f C L
1
CO ,” ;H) and the operator A

f 
s a t i s f i e s  the convergence condi t ion

then for every x € H the solution u(t) of (5.1) converges strongly to an element p EA 1 f .
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Usually, one cannot obtain information about whether or not A
f 

satisfies the

convergence condition from the fact that A satisfies this condition. In some cases

however this is possible. We start with the following proposition.

Proposition 5.4:

Let A be maximal  monotone sa tisf y ing

(5 .10) (y
1 

- y
2
, x

1 
— x2) > 0 V (x ,y.] € A i = 1,2, such tha t x

1 ~

If ( I  + A) 1 is compact then for every f C R C A ) ,  A f satisfies the convergence condition .

Proof: Clearly f € R(A) implies A
1f = A

f
1
0 * 4,. Also (I + A)

1 
compact implies

tha t (I + A
f
)
1 is compact since

(5. 11) (I + A) 1x = (I + A
f
) ’(x — f )

From the assumption (5.10) we have

(y — f , x - Px) > 0 V [x ,y] C A s.t. x ~ Px

where P is the projection on A 1
f . Therefore

55 (z ,x — Px) > 0 V[x , z) C A
f

and the resul t  follows from Proposition 3.2. •

A somewhat similar situation holds in the case where A = 3~ and ~ has compact

level sets . In this case we have ,

Proposition 5.5:

Let ~ be a proper convex l.s.c. function for which the level sets

(5.12) K (R
1
,R
2

) = Cx : lx i < R
i ~ (x) < R

2
}

are precompact for al l  R
1 

> 0 and R
2 

real. If A = 3~ then for every f C RCA) , A
f

satisfies the convergence condition .

Proof: Since fe 8(A), A
f
1
0 *4,. Let f € A~ then

~ (x) — (f,x) > p U )  — (f ,~~) Vx € H

Therefore

y Min~p (x) — (f ,x)} = ~~(~~) 
— (f ,~~) > —=

xEH

Let

( 5 . 1 3 )  4,(x) = ~ (x) — (f ,x) — .
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Clear ly  4,(x) is proper convex , lower semicontinuous , 4,(x) > 0 and Mm 4,(x) = 0.
XE H

Moreover 34, = — f = A
f
. In order to show that A

! 
satisfies the convergence condi-

tion it suffices (by Proposition 3.1) to show that the level sets of 4,(x) are precompact

but this is obvious in view of the definition of 4,(x) and our hypothesis (5.12). U

From Proposition 5.5 we immediately obtain the following result of H.  Brezis ( [ 2 ] ,

chapter 3, theorem 3.11).

Corollary 5.6:

Let ~ be a proper convex l.s.c. function such that the level sets of ~

K ( R
1
,R
2
) = Cx : Ix I < R

1
, ~‘(x) < R

2
}

are precompact for every R
h 

> 0 and 8
2 

real. Let A = 3~p,  f C 8(A) and let f(t)

be a function satisfying f(t) — f C L
1(0 ,= ;H) . If u ( t )  is the solution of (5 .1)

then u(t) converges strongly as t • = to a limit u C A
1f .
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§6. A discrete version of the convergence theorem

In this section we discuss briefly a discrete version of Theorems 2.2 and 5.1. This

version consists of replacing the differential equation defining S (t)x by the finite

d i f f e rence  scheme

x -xn n l
+ A  s o

A n
(6.1) n

= x

or equivalently

(6 .2) x 3 x , x = xn A n-l 0n

and studying the convergence of x as n -
~ = . We shall see that if A s a t i s f i e s  the

convergence condition and A = = then x -€ p C F as n + . Ac toa l l y ,  we shall
n=l n n

allow for some errors in the difference scheme (6.1) and ra ther than de f in ing  the

sequence C x )  by ( 6 .2 )  we shall define it by

(6.3) x = J (x + a ) ,  x = xn A n—h n 0n

where e
n 

is an error term . From (6 .3)  we have

(6.4) x + A y = x + e , [x ,y I C A
n n n  n-h n ri n

and we shall henceforth , in this section, denote the element 
~
‘n 

€ AX
n 

defined by (6.4)

by Ax n

We start with some general properties of the sequence C x )  defined by (6.3).

Proposition 6.1:

Let A be maximal monotone with A * 4, and let P be the projection on

F = A 
lo Let C x }  be the sequence defined by (6.3) . If 

n~ l 
e l  < then

i) Ix — Px I < M for all n.n n —

ii) him Ix — Px exists.n n

iii) lint Px = p € F exists.
__ n

iv) If fu r the rmore  w (x)  C F then xn p € F as n -~ . He r e means weak

convergence in H and ~ Cx) is the weak s—limit set of x i.e.w

~ {y : 2nk ~ such that x -
~ y}

—24—
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Proof :  We hav e

(6.5) ix — mc ~ lx — Px I = IJ Cx + e ) — Px I < ix — Px I + e
n n — n n—i A n—l  n c—i n-l  n-i  nn

Iterating (6.5) bc’iwee n k arid n > k we ob t a in

(6.6) ix
~ 

— p x I  < X
k 

- PX
k 1 + ej

j=k+l

which implies (i) . Taking the upper limit on n in (6.6) yields

(6.7) limsup l X n — P x 1  < lx k 
- Px k l + 

- ~ ej Vk
n-~=’ j=k+l

Taking now the lower l imi t  on the r igh t  hand side of ( 6 . 7 )  i~roves ( i i ) . To prove ( i i i )

note that from the d e f i n i t i o n  of P it follows that

(6.8) IPx — Px 1
2 
~ lx — Px 

2 — ix — Px 1
2

n k — n k n n

Also ,

(6.9) Ix — Px I = l~ 
(x + e ) - Px I < ix — Px + len k A ri—h n k — n-I k nn

Iterating (6.9) down to n = k we obtain

Ix~ — Px
k l < - Px

k i + 

j k+l

and the re fo re

(6.10) Ix 0 
— Px k l

2 
< lx k 

- Pxk I
2 

+ 2M 
~ e l  + ( ~

j=k+l ~ j=k+l ~

Subs tit u t i ng  (6 .10)  into (6 .8 )  and using ( i i )  it follows that Px
n 

is a Cauchy sequence

and the re fo re  converges to some p C F.

Finall y, to rove (iv), note that from Ci) and (iii) it follows that {x ) is
n

boundpd , let x -
~ 1. From our condition it follows t I~- it 9. C F. By the dofinitiori

of P we have

(6.11) Cx — Px , 9. — Px ) < 0
n
k 

n
k 

n
k 

—

Letting n
k 

we conclude t h a t  = p = u r n  m c .  L i n : - e  the l i m i t  is independent  of

the sequence it fol lows that  X
n 

-
~ 
p as n . U
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Remark: If we d e f i n e  Cx I by (6.2) i.e. with e = 0 for all n , it was shown by

H. Brezis and P. L. Lions that  if L 1
2 

= = , for any initial x € H and

therefore x 
~ 

6 F. Since clearly Ax • 0 implies w (x) C F this result also

follows from Proposition 6.1 once we know that Ax + 0. H .  Brezis and P. L .  Lions [5]
n

also showed tha t if A = 3~ then A = = implies Ax • 0 and therefore x - p.
n nn= 1

- In the linear case part (iv) of Proposition 6.1 can be improved as follows .

Proposit ion 6 . 2 :

Let A be linear maximal monotone . If Vx € H we have for the sequence C x )

defined by (6.2) Ax -€ 0 the n Vx € H , xn 
+ Px where P is the orthogonal projection

on F = N(A) .

Proof: If A is linear A0 = 0 and therefore F * 4,. Also for maximal monotone A

we have H = N ( A ) • R C A )  where R C A )  is the closure of the range of A. This implies

that for every c > 0 there are y
0 

€ 8(A) and r
0 

such that

(6.12)  x — Px Ay 0 + r0 lr 0I < s

Star t ing  the i teration with (6.12)  and noting that J1 Px = Px we obtain

(6.13) x - P x = Ay + rn n n

where y~ ~ A~~
’n-l and r n = J A n

r n_ 1~ 
Since by our assumption Ay • 0 (6.13) implies

l irnsup l x 0 
— Px l  ~ E

and since £ 0 is arb i t ra ry  x -. Px as ri -~ =.n
We now tu rn  to the discrete analogue of Theorem 5.1.

Theorem 6.3:

Let A be maxima l monotone satisfying the convergence condition. Let x
0 

= x € H a 3

J Cx + e ) ,  n 1 ,2  
A n—l n
n

I f  
~ 

= and Y l e n I then X
n 

converges strongly as n * ~ to some p € F.

n=l 11=1

4



Proof: From the definition of x we have
n

(6.14) x — P x  + A A x  x — P x  + e
n n n n n—h n n

Multiplying (6.14) by X - Px and rearranging we obtain

(6.15) A (Ax ,x — Px ) < Ix — Px 1
2 

— Ix  -Px 2 
+ Ce ,x -Px ) + (Px — Px ,x — Px

n n n n — n—h n—h n n n n n n—h n n n

By the def in i t ion  of P the last term on the right of (6. 15) is nonpositive and therefore ,

A (Ax ,x — Px ) < lx — mc 2 — Ix — Px 2 
+ M Ien n n n — n—h n—i n fl fl

which implies

(6. 16) A (Ax ,x - Px ) <
fl n n  nn l

Since by assumption ~ A = it follows from (6.16) that
n 1  ~

h ixninf (Ax ,x - Px ) = 0
n n n

and therefore from the convergence condition

iiminf lx - Px = 0
n-~~ 

n n

From Proposition 6.1 (ii) we deduce that lx — Px + 0 and since Px • p C F alson n n

x -
~ 
p C F and the proof is complete. U

Remark: In the continuous case we saw that if A satisfies the convergence condition

with a gauge function p(s) that satisfies (4.13) then S(t)x converges to its limit

in finite time. This “f in i te  time ” convergence is very delicate and as we saw in

Section 5 once the equation

(~ du 0
I — + A u = 0

(6.17) dt

uCO) = x

is satisfied only approximatehy i.e. there is an error term wh ich is L1CO ,°’;H) one

can no more have convergence in finite time. The discrete sequence

— (6.18) x
n ~I1

x~ _1, x
0 

= x

—27— 
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is just an approximation to (6.17) and therefore one cannot expect convergence in finite

time for x ,  and indeed this is impossible in the discrete case since x = p € F

implies X n_ l  = p € F and therefore x = p € F.

On the other hand if we consider the sequence

(6.19) x = J Cx + a ) ,  x = x
n A n-i n 0

n

then one can hit a fixed point p in f i n i t e  t ime,  but un less  a l l  e
n 

= 0 after this r,

the fixed point p will not necessarily be the limit of the sequence {x~~ and clearly

we wi l l  not have x
n ~ for n > N .

In the case A satisfies the uniform convergence condition one can of ten deduce

also in the discrete case a rate of convergence of X
n 

to p. The case where all e = 0

is the simplest. In this case lx — P X I  is monotonicahly nonincreasing and from (6.10)

passing to the limit as n + we obtain I~ 
— PX

k l < ix k 
- PX

k l and therefore

(6.20) I~ 
— x < 2Ix — Px In — n n

Assuming now that A satisfies the uniform convergence condition with a strictly increas-

ing gauge function p (s) one deduces from (6.16) that

(6.21) 
n~l 

X p (lx - Px f) ~~ lx - mc i2

which implies

(6.22) lx - 

~ l < 2~~
1 L x -  pxl

2

~k=h

This is a much slower rate of convergence than the rate that was obtained in the

corresponding continuous case.

-28—
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~7. A nonlinear Neumann problem

In  this  section we consider a concrete example of a nonlinear Neumann problem and

study its asymptotic behavior . In the study of this example we use some of the results

that wer~ developed in the previous Sections as well as some ideas motivated by these

results.

Let (2 be a bounded domain in with sntooth boundary 3~~. The measure of 0

w i l l  be denoted by l~~I .  Let H be the Hilbert space L 2 ( P )  with the norm denoted by

II~ ll and let 8 be a maxima l monotone graph with primitive j, s a t i s f y ing 0 €  8(0).

Consider the initial value problent

— Au + 8(u) s 0 in (2 [0,=)

(7.1) = 0 in 30 x [O , )

u ( 0 ,x) = u0 (x )  in £7

It is well known that for every 0
0 

€ L2(0) the initial value problem (7.1) has a unique

solution u satisfying u C C ([0 ,); L
2
W)) and u (t) C H2 (Q ) for every t- > 0

(see e.g. [31).

Moreover , the operator A = —A + B wi th  the Neumann boundary conditions appearing

in the problem is the subdifferential of the lower semicontinuous convex function ~

given by

~ 
Vu~

2dx + f j(u)dx for u C H
1 (8) and j(u) C L

1
(0)

(7.2) ~~(u)  =

otherwise

I t  f o l l o w s  immedia te ly  from R el l ic h ’ s compactness theorem that the Sets

K
C 

= {u : u 6 L2 (8) , l l u ll ~ c, ~~u) < C}

are precompact in r~
2
(o) for every real C. In order to use the results of the previous

sections we have to iden ti f y  the set A 1
0. This we do in the next lemma.

Lemma 7.1:

Let 8
1 ~ 

0 < 8
2 and assume that [8 .82

] = B I (o). For the operator A —A + B

‘ with Neumann boundary conditions , A 
l
~ is the set of all constant functions u =

-29—



with B
~ ~ ~ 

8~~. Ihe projection P on this Set is given by:

82 if u > 8
2

(7 .3) Pu = U if B~ u 82

if u < 8
1

where

— 1 r(7.4) u — u dx
£7

Proof: Let Au = 0. Since 0 € 8(0) we have u 8 ( u )  > 0 and therefore:

( 7 .5 )  0 = (Au ,u)  = f lVu j~ dx + f 8(u) . udx > f Vu I 2dx
12 (7 (7

This implies Vu = 0 a.e. and thus u = const. From (7.5) it then follows that 8( u )  = 0

and therefore 8
1 

< u < 82. To compute p we consider

Pu Inf I lu — ki
2
dx

12

and a simple computation shows that Pu is given by (7.3). U

combining the previous lemma with Proposition 3.2  we obtain

Proposition 7.2:

If 81 
< 0 < 82 

and [8
1.82

] = 8 1(o) then for every u0
€ L

2(l2) the solution

u ( t ,x) of (7.1) converges (in L
2U))) as t + = to a constant u~, satisfying

< u < 8
2
.

In the rest of this section we shall study the rate of convergence of u(t,x) to

its limit and we shall try to estimate the limit  u
= 

as a function of the initial

data 0
0~ 

We start with the following proposition.

Proposition 7.3:

Let B be a maximal monotone graph satisfying 0 €  8(0). Let u(t,x) be the

solution of the initial value problem (7 .1 )  . If

u(t) = .L j u(t ,x)dx
I~~l 12

then

-30-
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-21 t
(7.5) 1 lu (t,x) — u(t) I

2ax ~ e 
1 

f 1u01x — 
~0 l

2ax
(7 12

where is the smallest nonzero eigenvalue of —A with Neumann conditions on 3(7.

Proof: Multiplying the equation in (7.1) by u(t,x) — u(t) and integrating O r  £2

yields:

(7.6) 
~~ J lu - ~ l

2dx + f Vu~~dx + f 8(u) Cu — u )dx = 0
(7 (7 (7

Since 8(u) (u - u) > 8(u) Cu — u) we have

J 8(u ) (u - ~)dx > 1  8 C u ) (u - u )dx = 0

and therefore,

(7.7) ~~
- 

~~ 
f Iu - 

~ I
2dx + I lvu l

2
dx < 0

Using Poincare ’s inequality we obtain

.5 

~~~~ f l u  - 
~ I

2dx + 
~1 ~ 

lu - ~ l
2dx < 0

which implies (7.5). U

If B I 0 one obtains easily by integrating the equation over £2 that u(t) = u0

for all t > 0 and therefore we have :

Corollary 7.4:

If 8 E 0 then

—2y t
(7.8) I tu(t ,x) - u01 dx < e 1 f 

~0 
— 
~0l

2
dx

In the linear case we can therefore identify the limit u of u(t,x). The limit

in this case is u and the convergence of u ( t ,x) to u,,, is exponential. We

shall henceforth assume that 8 is a maximal monotone graph sati s fy ing

(7.9) B
h (0) = (8 1.8 2 1 whe re < 0 < 8

2

Clear ly  one cannot expect exponential convergence to the limit for arbitrary B

satisfying (7.9). Indeed , other behaviors are exhibited in the next example.

—31—
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Example 7.5:

Let 8 s a t i s fy  (7.9) and let u (t,x) be the solution of (7.1) with u(0,x) = U
0

where 00 is a constant s a t i s fy ing  0
0 

> 82 . In this case u ( t , x)  is independent

of x and satisf ies

f ~~~~ 

+ 8(u) ~ 0

(7.10)

~. u ( 0 )  = u
0

From Proposition 7.2 we know that u (t) • u
= 

as t • =. The rate of converqencf-  h- we- -: -e

depends strongly on 8. choosing for example

0 s < 8
2

( 7.11) B ( s )  =

I k
LY

(S 
~~ 82

) s > 8 2

we obtain an explicit solution of (7 .10) given by

( 7 . 1 2 )  u C t )  = 8
2 

— 

~~0 
— 82

) [l + y(k — 1) Cu
0 

— B )
k l

t]
1/l k

If k > 1 the convergence of u C t )  to 82 
is very Slow , whi le  if k < 1 , u ( t )  reaches 55

its limit 8
2 

i.n finite time.

In the rest of t h i s  section we shall assume for simplicity that u
0 (x) 

> 0 and

that 8 satisfies :

(7.13) B(s) 1 0 for s < 1 and B(s) > 0 for 5 > 1

Heuristically it is clear that if u < 1 the rate of convergence of u(t,x) to u

can be at most exponential with the exponent being the smallest nonzero eigenvalue

of —A with Neumann boundary conditions on 3(7. The reason for this is that for large t,

u will be near its limit u and thus 8(u) will essentially be zero so that the

problem will behave for large values of t as the l inear  problem . In order to make

this heuristic argument rigorous one has to prove that u(t,x) converges to u in

L ((3). This can be done but we shall not do it here.

In order to obtain estimates on the rate of convergence to the limit u we shall

need the following lemma.

—32—
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Lemma 7.6:

ct u
0 

€ L
2
(I(), u

0 
> 0. The solution of (7.1) satisfiec

(7.14) u (t,x) € L (1) ) for  every t ‘ 0

Proof: Free the maximum -rinciple it readily follows that u ( t , x)  > 0 a .e .  for a l l

t > . Consider now the comparison function v(t,x ) sa ti s f y i ng

v~ - Lu, = 0 in 12 (0 ,”)

(7 .15)  = 0 in IP (0 ,”)

L v ( x , 0) = u
0(x) in £1

From the maximum ;rinciple we deduce

(7.16) 0 < u ( t , x) < vCt ,x) in P x (0,=)

For the l inea r  problem (7.15) however , it follows easily from the fact that v = C * V
0

and the known estimates on the Green ’s f u n c t i o n  C (see [ 9 ] )  tha t  v ( t , x)  C

for t > 0 and the re fo re  the r e su l t  fol lows from (7.16) .

In our next proposition we shall use the following terminology . A maximal menotone

graph B satisfying (7.13) will be called forcefuL if it has the following property;

for every ~ > 1 the solution of the ordinary differential equation

( ~~ 
+ 8( v )  ~ 0

(7.17) ç
v(0) = c

reaches the value v = 1 in finite time. Exai ples of f o r c e f u l  8 are

1
( 7.18) B ( s )  = ( - 

—

— 1) ’ s > 1

where 
~ 

> 0 and 0 < a < 1.

Proj~pp it ion 7.7:

Let B be forceful . For every u~ € L282), u
0 

> 0 there is a T < = Such that

the so lu t ion  u ( t , x)  of ( 7 . 1 )  s a t i s f i e s :

( 7.19) u ( t , x)  < 1 a . e .  for  t > T

Moreover , if U < 1 the convergence of u ( t , x)  to u,, has exponential rate , whereas

if u = 1 the limit is reached in finite time.

—33—
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Proof: From Lemma 7.e i t  fe l lows  tha t  wi thout loss of generality we can assume that

€ L (P) . Assuming this , i t  fo l lows  from the maximum p r i n c i p l e  that 0 < u ( t , x)  < v(t)

where v C t )  is the se lu t ion  of (7 .17)  wi th  ~ = 11 u 0 11 . If Ilu 0 ll < 1 we are
LW )  L

in the linear situation and by Corollary 7.4 we have u = and the rate of convergence

is exponential. If lu > 1 it follows from our assumptions on B that v~~~)

reaches the value  1 in  finite time and hence u(t,x) < 1 after a finite time. Let

to be the infimum of the values of t for which IIu(t ,x) II = 
< 1. If u (t

0
,x) < 1

then for t > t
0 

we are again in the linear situation and hence we ha”e convergence to

u = u (t0,x) and the rate of convergence is exponential . If u ( t 0
,x) = 1 then

u ( t
0

,x)  = 1 a . e .  and the limit u = 1 has been reached in f i n i t e  time . U

From Proposi t ion 7 .7  it fo l lows  that  if 8 is forceful  then the convergence rate

is at least exponent ia l .  In order to assure exponential convergence however , B need

not be f o r c e f u l .  It  is usua l ly  s u f f i c i e n t  that  
~~

— 
81 > 0 , this can be seen from

ds s=l

the next  r e s u l t .

Proposition 7.s:

Le t  B s a t i s f y  (7.13). I f  there is a Y > 0 such that

(7.20) B(s) > y(s — 1) for s > 1

then for every u0 
€ L 2 ((3 ) the convergence of u ( t ,x)  to u has exponential ra te .

Proof:  From Poincare ’s i n e q u a l i t y  and our assumptions we have:

(7.21) (Au, u—P u) = I lVu l
2dx~~f 8(u) (u - Pu)dx >

~~~l ~ 
u - u l

2
dx+y I Iu -l I Iu - P u l d x

(3 1) 12 u >l

I f  u satisfies u < 1 then by (7.3) Pu = u and from (7.21) we have

(7.22) (Au ,u — Pu) > 11110 — Pull 2

If U > 1 then by (7.3) Pu = 1 and front (7.21) we have :

(7.23) (Au,u — Pu) > min (y,y
1)(f lu 

— 

~ l
2dx + I lu — ll

2
dx)

(7 u>h

= min (y , y
1
)(f lu - lI

2dx - l l i ~ - i 1
2 
+ I lu - h l 2dx) .

(2 u>l

—34—
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S;n:e U > 1 w have

(1 Cu - l)dx)
2 

< (J Cu - l ) dx) 2

12 55 .

where a = ~x ( a , O ) .  The re fo re ,

(7.24~ l 1 2 l 2~ u - l [~ = ( 1 Cu - 1)dx)
2 

< (f  (u - l) dx)
2 

~ 1 f Cu - 1) 2dx
12 (2 u>1

w h i c h  t ’ - u - t h -r  w i t h  ( 7 . 2 3 )  implies

(7.25) (Au ,u — Pu ) > m i n ( y , y
1

) I lu — lI
2dx = m i n ( y , y

1
) b —  Pull

2

Combininq (7.22) and (7.25) we have always

(Au ,u — Pu)  > min(y,’y 1)li u - Pull
2

and the result follows from Proposition 4.7.

We conclude this section with two lower bounds on u .

Proiosition 7.3:

Let u
0
(x) > 0 and Set v

0
(x ) = m i n ( u

0
(x),l). If u is the limit of the solution

u(t,x) of (7.1) as t • then

(7.26) 0 > v
0

(x )  = 
]-

~~

-

~

- f v
0
(x)dx

Proof: Cons der the comparison function v sa t i s fying

v — Lw = 0 in (2 x (0,”)

= 0 in 3(7 ‘~ (0~ ”)

v ( 0 ,x) = v
0

( x )  .

From the maximum pr inciple  i t  fo l lows that  0 < v ( t ,x) < 1 a.e. for all t > 0. From

c)rcllary 7.4 we have v(t ,x) ‘ ~- -~~-~- f v~~(x)dx as t -•  “. To conclude the proof we

shall now show that u (t ,x) > v Ct ,x> for all t > 0. Let w = u — v then

1 ~~~~ 

— Aw + $Cu ) 0

(7.27) 
=

w (O,x) u
0
Cx) - v

0
(x) > 0
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Multiplying (7.27) by w_ = —min (w ,0) and integrating over 12 we obta i n

(7.28) ~~
- 

~~ 
I iwj

2
dx + I I~wj

2dx + I 8(u)w dx = 0
(7 (2 1)

But w _ ( t , x )  # 0  only if u C t , x) < v ( t ,x ) .  Since v ( t , x) < 1, w(t ,x) #Q  only wi —

B(u(t,x)) = 0 and therefore

I 8(u)w dx = 0
(2 55

So from (7.28) it follows that J lw _ I
2dx is nonincreasing and since for t = 0 it

£2
equa l s  zero we have w_ (t,x) = 0 a.e. and therefore u(t ,x) > v ( t , x)  aid the i-roof

if complete .

In certain cases, one can obtain a lower estimate for u which is d;fferent from

the estima te g iven in Proposition 7.9. We restrict ourselves now to the case where

0
0 

C L (:2) and u
0 

< I and conclude this section wi th  the following result;

Proposition 7.10:

Let u0 
€ L (l2), 0

0 
> 0 and denote m = I bu 0lI . Assume further that

(7.29) B(s) ~ y (s — 1)
P for s > 1

where y ~ 0 and o > 1. If Uo 
< 1 then

(p—i)

(7 .30) u > 1 1
0 

— 
— 1 

Cm — 1)~~~ for 1 p < 2

and

(7.31) U > u
0 

— 

~~~

— 6~ (m — i~~~~
2 for 2 <

where

2 1 ,  — 2
= j Cu

0 
— uo) dx

is the ini tial variance of u and 11 
is the smallest nonzero eigenvalue of - -~ with

the Neumann boundary conditions on 3(2.

Proof : Integrat ing Equation (7.1) over £2 y i elds

(7 .32) + —i--- I 8 (u)dx = 0
t ((I ll
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Using (7.29) 50 have

(7 . 3 3 )  + —
~~

-— I Cu — l)~~dx > 0
dt 11) 1 u>1 

—

From ( 7 . 3 2 )  i t  fol lows that  u (t) is nonincreasing in t and therefore u ( t ) 
~

This together with (7.5) implies

(7.34) f (u - l)
2
dx < f Cu - u)

2
dx < f Cu - u)

2dx < e 
2~ 1

t 
2

u>l u>l (2

Now if 1 < p ~ 2 we have

(7.35) f (u-1) dx < (f (u-l)dx) 2 ° (I (u - 1)
2
dx)~~~

1 
< b Q I

2
~~~(m-l )~ I u - 2dx °’

u’l u>1 u>1 12

~ 12 1 Cm — 1)~~~~0
l~~~~~~~~~~0U

while if p > 2

(7. 36) I Cu — 1) 
2
dx < Cm — 1) ~ 

2 
~ 

Cu — 1 ) 
2
dx < Cm — 1) 

P 2 j fu — u~ 
2
dx

u>1 u>1 P
—2y . t

< (m — l) 2
e -~ 

~~~ -

Substituting these estimates into (7.33) and integrating from zero to infinity gives

the results.
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